

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO OESTE DO PARÁ

Rochas e Minerais

Profa Dr. a Iolanda Reis

ROCHAS

O que é rocha?

São agregados naturais sólidos composto por um ou mais minerais.

Tabela 1. Divisão quanto sua composição mineral

Rochas monominerálicas	Rochas pluriminerálicas
Calcário	Gnaisse
Mármore	Gabro
Quartzito	Granito

De acordo com sua formação geológica as rochas são divididas em três grupos: ígneas, sedimentares e metamórficas.

ROCHAS ÍGNEAS

Vulcânicas ou extrusivas, onde a consolidação do magma se deu à superfície.

Ex: basalto, pedra pome.

Plutônicas ou intrusivas, que são formadas subsuperfície (mais profundos que hipabissais).

Ex: gabro, granito.

ROCHAS ÍGNEAS

CLASSIFICAÇÃOES

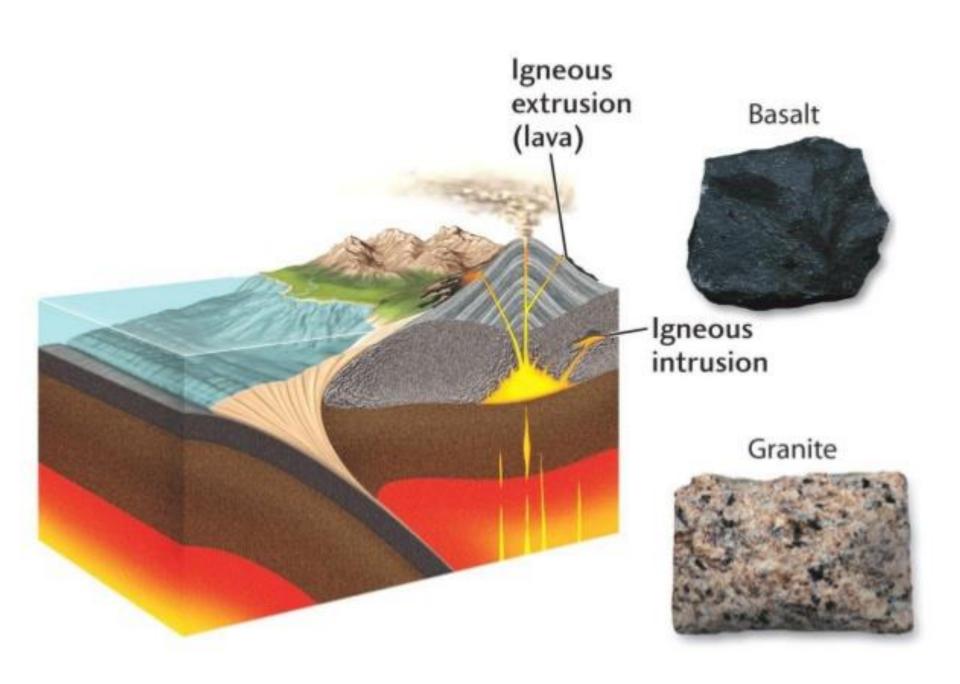
Granulometria

Faneríticas ou grosseiras.

Ex: granito, gabro.

► **Afaníticas**, ou finas

Ex: basalto, riolito.


Rochas Intrusivas ou Plutônicas

Rochas Extrusivas ou Vulcânicas

Imagens google, 2024.

ROCHAS ÍGNEAS

CLASSIFICAÇÃOES

Teor de SiO2

▶ Ácidas: SiO2 > 65%. Tais rochas sempre contêm uma proporção expressiva do mineral quartzo, de forma que ele pode ser facilmente identificado na rocha.

Ex: granito.

Básicas: 45% < SiO2 < 64%; e Ultrabásicas: SiO2 < 45%.</p>
São rochas que não contém quartzo.

Ex: basalto (básica); peridotito (ultrabásica).

ROCHAS ÍGNEAS

CLASSIFICAÇÃOES

Cor ou percentagem de silicatos ferromagnesianos

Félsicas ou leucocráticas: rochas de cores claras.

Ex: granito, riolito.

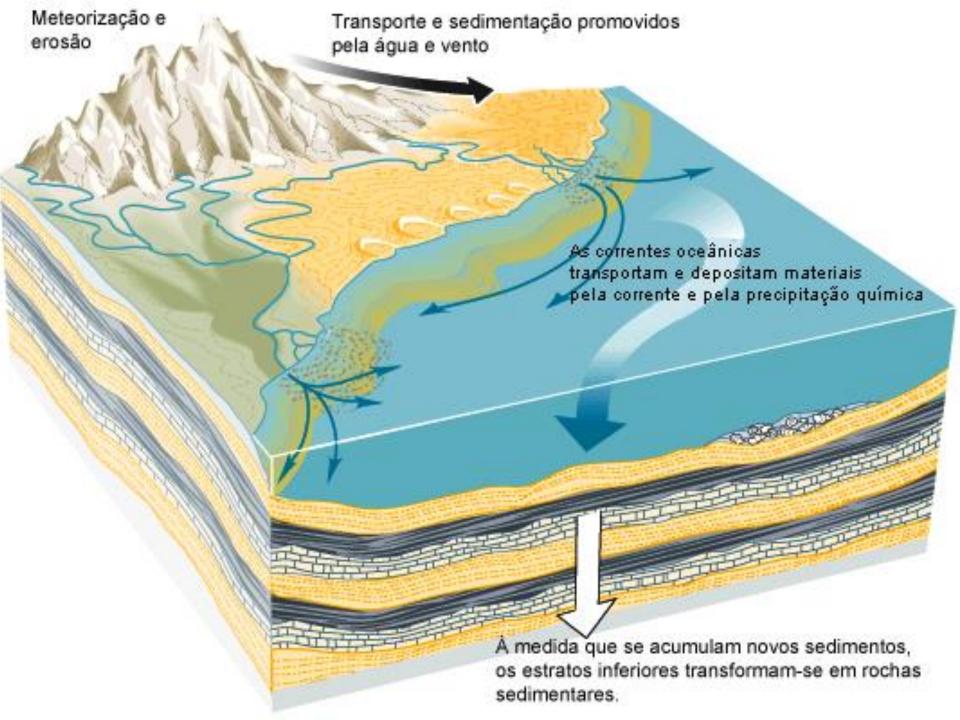
Máficas ou melanocráticas: rochas de cores escuras.

Ex: basalto, gabro.

ROCHAS SEDIMENTARES

CICLO SEDIMENTAR

- Decomposição de rochas (intemperismo)
- Remoção e transporte dos produtos do intemperismo
- Deposição dos sedimentos minerais e orgânicos)
- Consolidação (endurecimento) dos sedimentos


ROCHAS SEDIMENTARES

CLASSIFICAÇÃO E IDENTIFICAÇÃO

Rochas sedimentares clásticas: formadas por minerais detríticos (rochas pré-existente).

Química: São formadas por minerais quimicamente precipitados, tais como a calcita e dolomita (calcários), a sílica.

Orgânica: São formadas pela precipitação e/ou acúmulo de materiais orgânicos animais ou vegetais.

Durante a **Diagénese**...

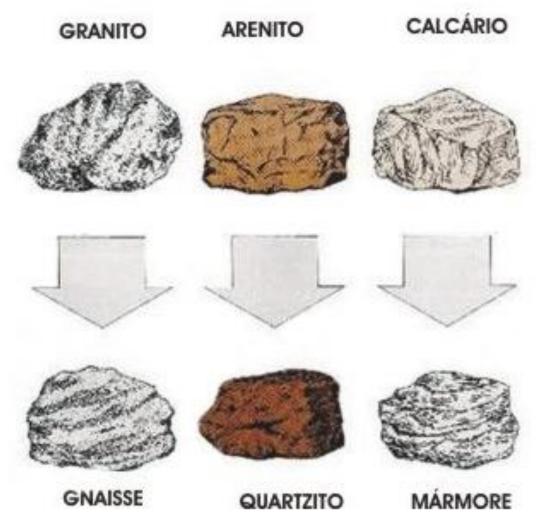
ROCHAS METAMÓRFICAS

CLASSIFICAÇÃO E IDENTIFICAÇÃO

- Metamorfismo Dinamotermal ou Metamorfismo Regional: influenciado pela temperatura e pressão.
- Metamorfismo Termal ou Metamorfismo de Contato: influenciado somente pela temperatura.
- Metamorfismo Dinâmico ou Metamorfismo Cataclástico: influenciado pela pressão e movimentação das rochas (atrito).

ROCHAS METAMÓRFICAS

Exemplos:


- Xistos: rochas cujos minerais são visíveis na amostra de mão. Constituídas essencialmente por minerais micáceos, e menor proporção de quartzo e feldspatos. São rochas folheadas.
- Gnaisses: rochas constituídas por quartzo, feldspatos, micas, e anfibólios. São rochas folheadas.
- Quartzitos: rochas metamórficas derivadas de arenitos. São rochas não folheadas.
- Mármores: rochas originadas do metamorfismo de calcários, compostas basicamente de calcita e/ou dolomita. São rochas não folheadas.

Rocha metamórfica

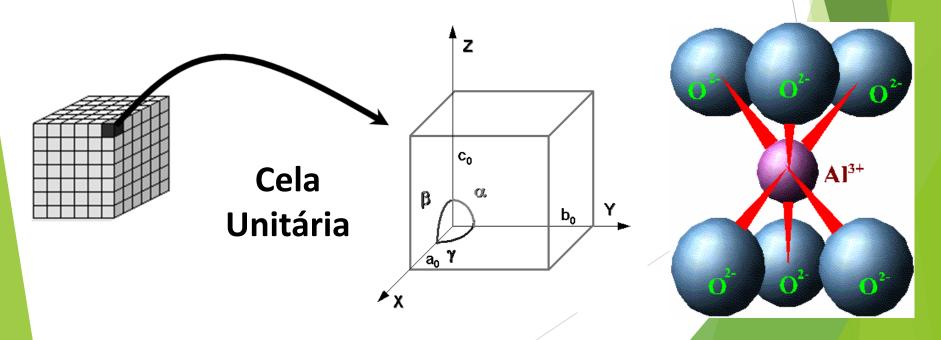
- Quando é exposto ao metamorfismo, o granito transforma-se em gnaisse
- No gnaisse, os minerais estão orientados segundo uma direcção concreta, o que não acontecia no granito

Rocha metamorfica

Fonte: Infoescola, blog, 2014

Ciclo das rochas

Fonte: Mundo da geologia, blog, 2014


MINERAL

Mineral

São sólidos de origem natural, com propriedades cristalográficas definidas formados a partir de processos geológicos inorgânicos e composição química específicas.

Composição e simetria

- A composição química bem definida e estrutura cristalina são fundamentais para caracterizar um mineral.
- Sua simetria resultado de empacotamento dos átomos.

Espécie Mineral ou Mineral

NOMENCLATURA DOS MINERAIS

Comissão de Novos Minerais e Novos Nomes de Minerais (CNMNM) e Associação Mineralógica Internacional (IMA), 1959)

- a) Terminação "ita", enquanto as rochas "ito";
- b) Nome de localização geográfica;
- c) Nome de uma propriedade física;
- d) Presença de um elemento químico;
- e) Homenagem a uma pessoa importante.

Formação dos Minerais

CRISTALIZAÇÃO

RESFRIAMENTO

Líquido ou Gases

Formação de um núcleo

Crescimento do cristal

Ex: Mica, Feldspatos, quartzo etc

PRECIPITAÇÃO

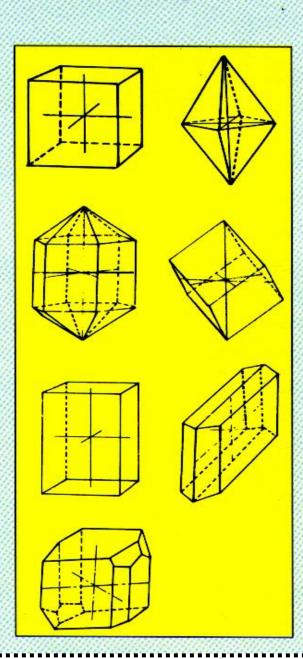
Solução Concentrada

Ex: NaCl, KCl, CaCO₃

Classificação dos Minerais

- a) Características Cristalográficas
- b) Propriedades Físicas
- c) Elementos Presentes
- d) Processo Genético
- e) Composição Química

Sistema de classificação dos cristais


Isométrico. Os três eixos têm o mesmo comprimento e estão em ângulo reto.

Hexagonal. De quatro eixos, três em um mesmo plano e o quarto, perpendicular ao plano.

Ortorrômbico. Três eixos de comprimento desigual, dois em ângulo

reto.

Triclínico. Três eixos de comprimento desigual em ângulos diferentes

Tetragonal. Três eixos em ângulo reto, dois no mesmo plano e o terceiro, perpendicular.

Trigonal. Três eixos em 60° no mesmo plano e o quarto, perpendicular.

Monoclínico. Três eixos desiguais, dois em ângulo oblíquo e o terceiro, perpendicular.

Propriedades Físicas

a) Hábito

É a forma característica de um cristal, ou a combinação de formas que um mineral cristaliza.

Também pode ser chamado de Tendência de Cristalização.

É a forma com a qual o mineral aparece frequentemente na natureza.

a) Hábito

Acicular

Natrolita

Colunar

Berilo (água marinha)

Tabular

Hematia

Prismático

Quartzo

Fibroso

Crocidolita

Micáceo

Muscovita

Cúbico

Limonita

b) Densidade

Leves: densidade abaixo de 2,89 kg dm⁻³

Quartzo e Feldspatos

Pesados: densidade acima de 2,89 kg dm⁻³

Turmalina, Zircão, Rutilo

c) Coloração

Máficos ou fémicos: apresentam cores escuras (Fe, Mg, Ti e Mn).

Olivinas, Piroxênios e Anfibólios

Félsicos ou Siálicos: brancos ou incolores (a base de silica ou alumina)

Quartzo, Feldspatos e Zeólitas

d) Dureza

Resistência do mineral à abrasão É caracterizada pela maior ou menor facilidade de fazer um risco em sua superfície. Esta propriedade depende da resistência das ligações químicas.

Dureza: Talco 1 Gipsita 2 Calcita 3 Fluorita 4 Apatita 5 Ortoclásio (K feldspato) 6 Quartzo 7 Topázio, Berilo, Turmalina 8 Coríndon (rubi, safira) 9 Diamante 10 (a D real é 42.4)

ESCALA DE MOHS

(Tia Georgina Caso Fores A Oliveira Queira Trazer Coisas Diversas)

e) Brilho

Refere-se a aparência geral na superfície dos minerais à luz refletida

Pode-se dizer também que é a capacidade de absorver, refletir e refratar a luz incidente.

Tipos:

Brilho Metálico:

reflete mais de 75% da luz.

Geralmente são minerais opacos (sulfetos ou óxidos de metais pesados e elementos nativos);

Brilho Não-Metálico:

Adamantino; vítreo; resinoso; gorduroso; nacarado; sedoso.

Galena Brilho metálico

Topázio Brilho vítreo

f) Clivagem e Fratura

I) Clivagem

Propriedade dos cristais em subdividir-se em planos paralelos.

Há uma menor coesão da rede cristalina entre estes planos.

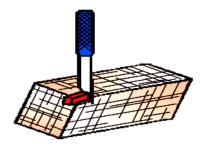
Reflete planos de fraqueza na estrutura, sendo perpendicular às direções nas quais as ligações são de baixa densidade e de baixa resistência.


f) Clivagem e Fratura

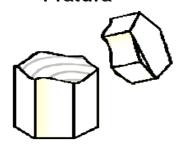
II) Fratura:

Refere-se a toda quebra de um mineral segundo uma superfície não coincidente com um possível plano cristalográfico.

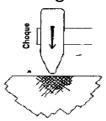
Os minerais sem clivagem quebram-se em fraturas irregulares. Pode ser conchoidal, fibrosa ou serrilhada;


Clivagem

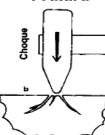
clivagem em 1 direção (muscovita)



clivagem em 2 direções (piroxênio)


clivagem em 3 direções (calcita)

Fratura


Diferença entre Clivagem e Fratura

Clivagem

Quebra com superfície plana definida (com tendência)

Fratura

Quebra sem superfície plana definida

Elementos Presentes

Reúnem-se em uma mesma classe, minerais contendo o mesmo elemento.

```
1) Minerais com presença de Fe: Hematita (Fe<sub>2</sub>O<sub>3</sub>); Goethita (HFeO<sub>2</sub>); Pirita (FeS<sub>2</sub>).
```

2) Minerais com presença de Cu: Cuprita (Cu₂O); Calcopirita (CuFe₂); Calcocita (Cu₂O).

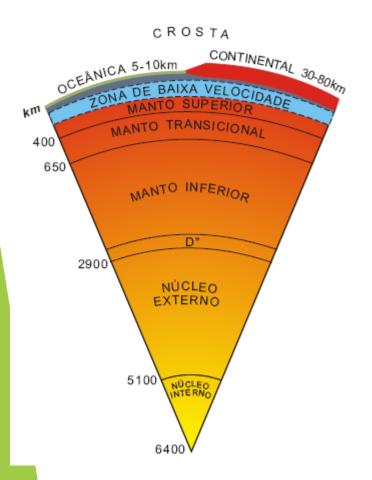
Processo Genético

Agrupa seus minerais de acordo com o seu processo de gênese.

a) Magmático

b) Metamórfico

c) Sedimentar

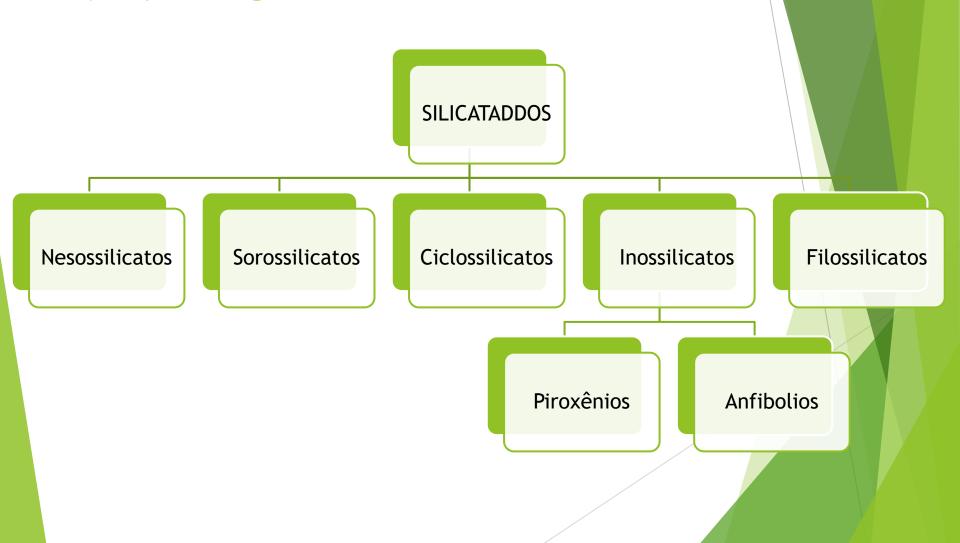

Composição Química

Classificadas de acordo com a natureza do grupo aniônico, o que confere à classificação uma precisão e coerência que outros critérios não possuem.

A base deste tipo de taxonomia de minerais é a natureza do radical ANIÔNICO.

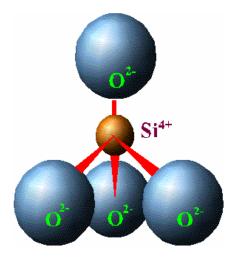
Ex: CO_3^{2-} SO_4^{2-} NO_3^{-}

Minerais formadores de rochas

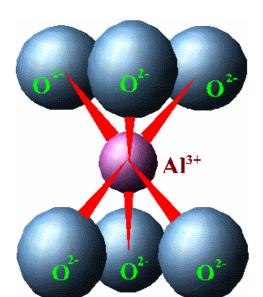


Constituição mineralógica da crosta continental.

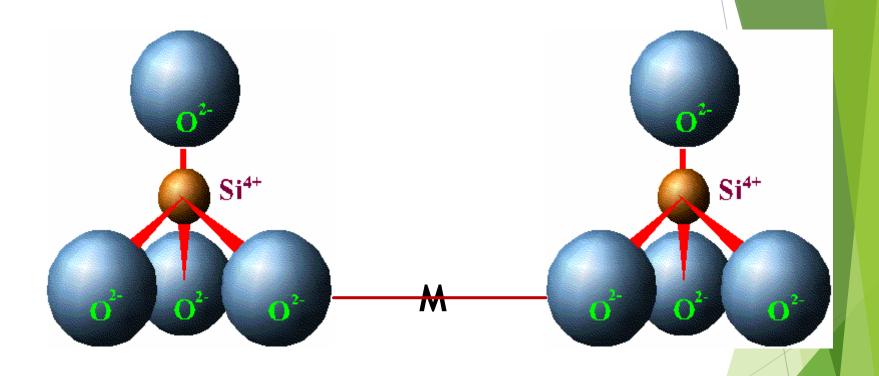
Classe mineral	Espécie ou grupo mineral e	% m vol.
	feldspatos	58
	piroxênios e anfibólios	13
Silicatos	quartzo	11
	micas, clorita, argilominerais	10
	olivina	3
	epídoto, cianita, andaluzita, sillimanita, granadas, zeólitas etc.	2
Carbonatos, Óxidos, Sulfetos, Halóides etc.		3
Total		100

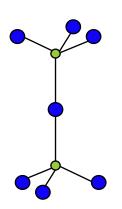


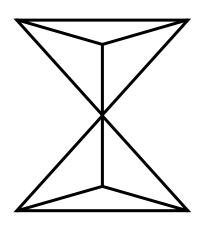
CLASSIFICAÇÃO QUÍMICA DOS MINERAIS



Organização dos minerais

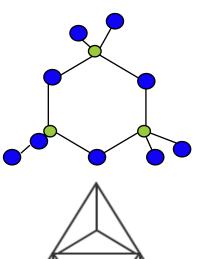

Tetraedro de Si

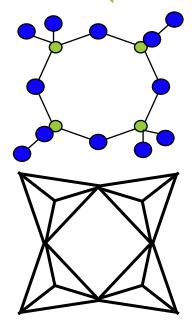

Octaedro de Al

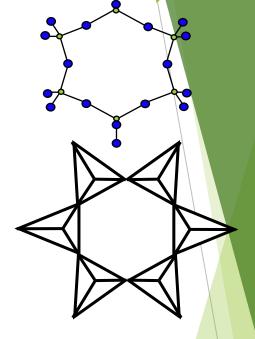


Nesossilicatados (Neso=ilha)

Sorossilicatados (soro=par)

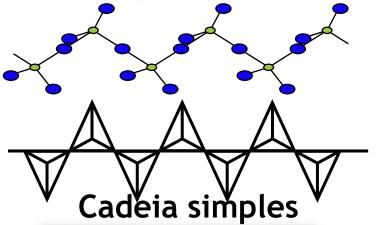






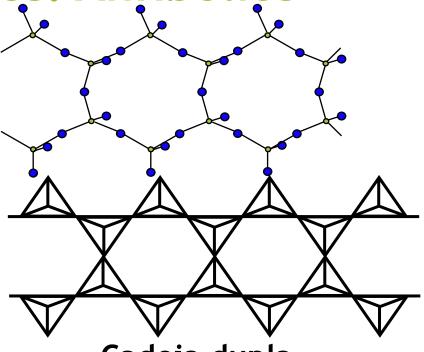
EPIDOTO $Ca_2(Al, Fe) Al_2O (SiO_4) (Si_2O_7)(OH)$

Ciclossilicatados (ciclo=círculo



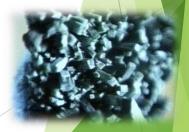
TURMALINA (Na, Ca)(Li, Mg, Al) (Al, Fe,Mn)₆ (BO₃)₃ (Si₆ O₁₈)(OH)₄

BÉRILO Be₂ AL₂ (Si₄O₁₈)

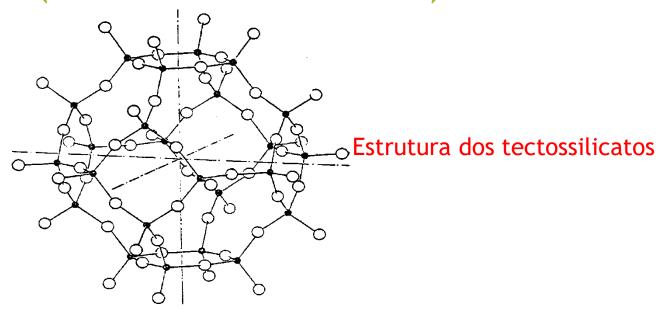

Inossilicatos: Piroxênios (ino= corrente)

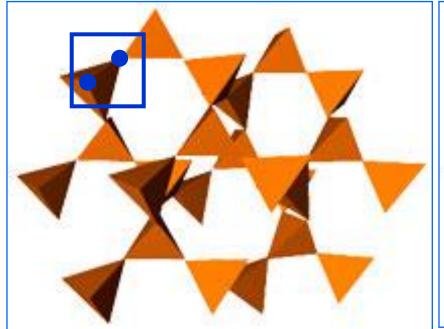
AUGITA (Ca, Na) (Mg, Fe, Al) (Si, Al) 2O6

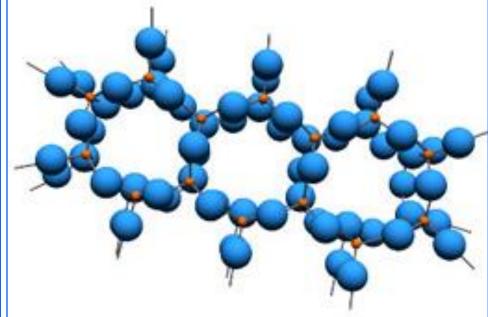
Inossilicatos: Anfibólios


Cadeia dupla

TREMOLITA $Ca_2 Mg_5 Si_8 O_{22}(OH)_2$




HORNBLENDA
(Ca,Na)₃(Mg,Fe,Al)₅ Si₄
(Si,Al)₂O₂₂ (OH)₂



ACTINOLITA $Ca_{2} (Mg,Fe)_{5} Si_{8}O_{22} (OH)_{2}$

TECTOSSILICATO (TECTO = ENGRADAMENTO)

Filossilicatos (filo= lâmina) TIPOS DE ARGILOMINERAIS

1:1

Folha de siloxana (Si)

Folha de gibbsita (Al)

Folha de brucita (Mg)

Caulinita
Al₂Si₂O₅(OH)₄

Folha de siloxana (Si)

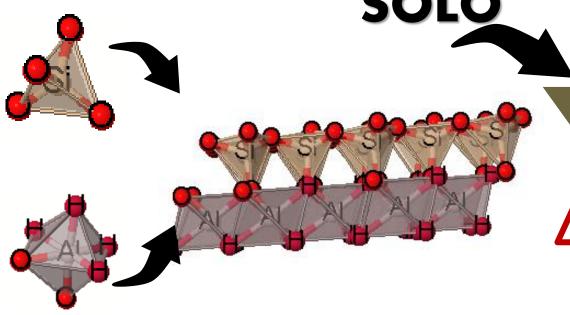
Folha de gibbsita (Al)

Ol

Folha de brucita (Mg)

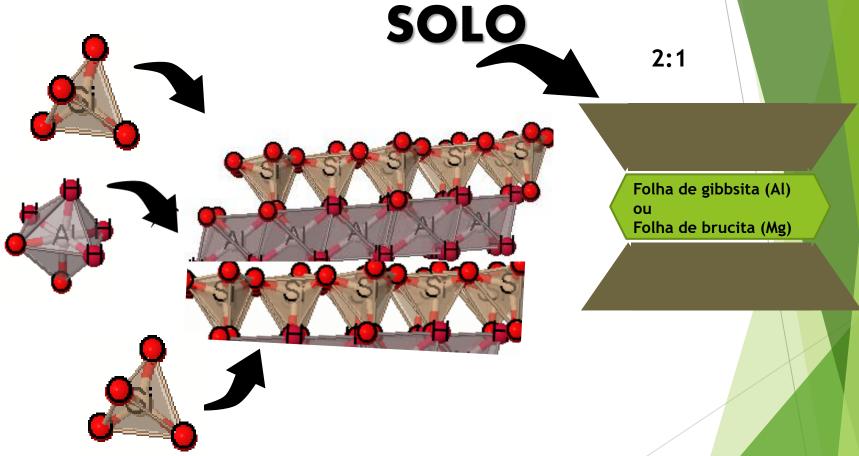
Folha de siloxana (Si)

MUSCOVITA


KAI₂ (AlSi₅O₁₀)(OH)₂

BIOTITA

K(Mg, Fe)₃(AlSi₅O₁₀)(OH)₂

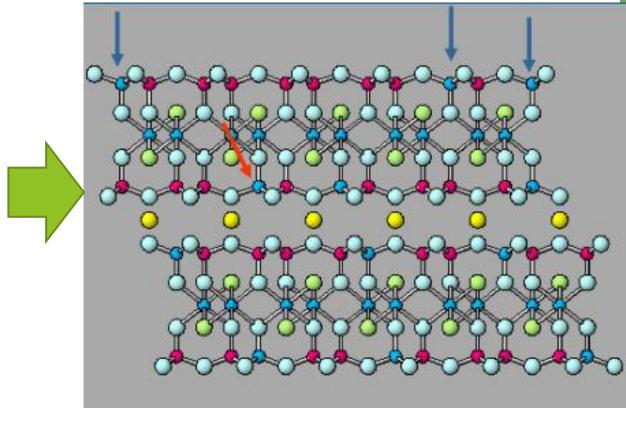

AS ARGILAS SILICATADAS DO SOLO

1:1

Folha de gibbsita (Al) ou Folha de brucita (Mg)

AS ARGILAS SILICATADAS DO SOLO

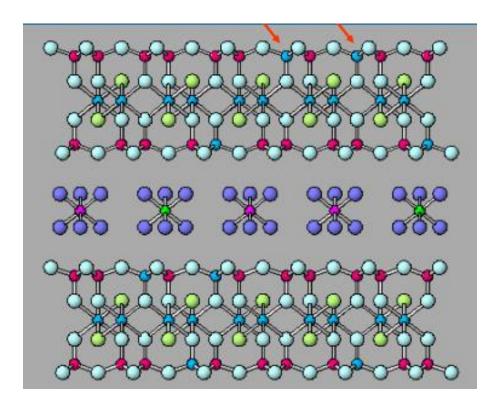
ARGILAS 2:1


ARGILA 2:2

ILITA VERMICULITA ESMECTITA 2:1 HIDROXI-ENTRECAMADA (2:1 HE)

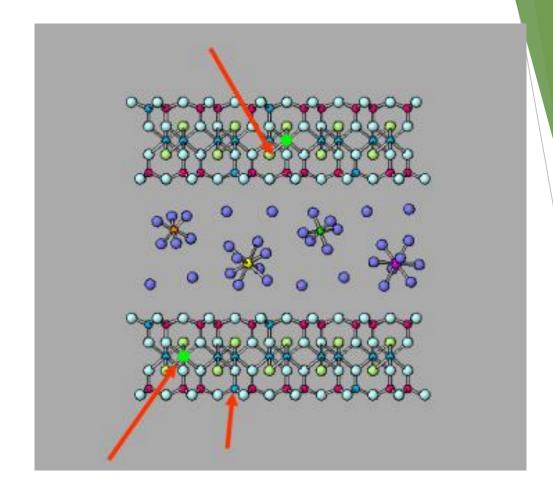
CLORITA

ARGILAS 1:1

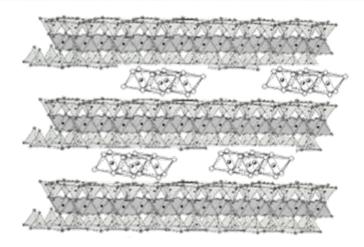

CAULINITA

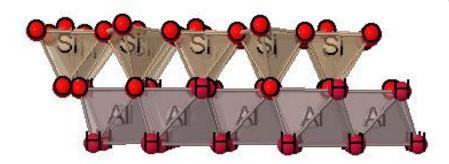
São muito parecidas com as micas, porém possuem moléculas de água (são hidratadas) e ocorrem na fração argila;

Possuem carga muito alta; /Fixam K; / Não se expandem.



Possuem carga menores que as ilitas; Podem fixar um pouco de K; Expandem, porem não tanto quanto as esmectitas.


M M


Possuem menos carga que a vermeculita mas maior que a ilita; São as mais expansíveis; Por isto possuem maior ASE; Substituição isomórfica do Al⁺³ por Fe⁺² e Mg⁺².

ARGILAS 2:1 - 2:1 HE \rightarrow (VHE ou EHE)

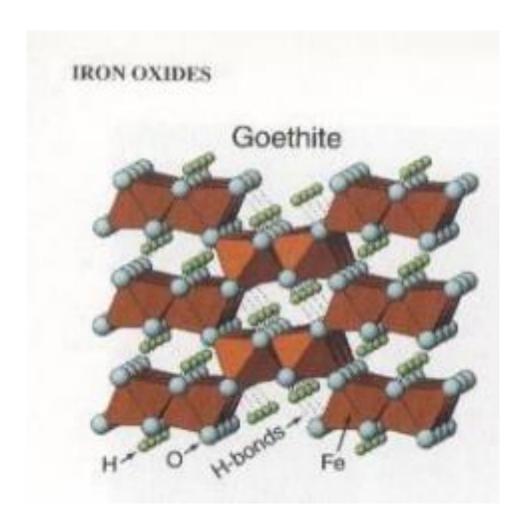
- Há octaedros de Alumínio na entrecamada
- ALTAMENTE RESISTENTE À DECOMPOSIÇÃO
- características químicas dependem do mineral inicial (vermiculita ou esmectita), porém não são expansivas

ARGILAS 1:1 - CAULINITA

- -não há substituição isomórfica
- -não expansiva
- -proveniente da decomposição das 2:1
- -NÃO HÁ ESPAÇO ENTRECAMADA

Resumo dos filossilicatos

Componente	Tipo de mineral	CTC (Cmol _c kg ⁻¹)	ASE (m ² g ⁻¹)	Expansivi dade	Dependência da CTC com o pH	Atividade coloidal
Ilita	2:1	20-40	70-120	Não	Média	Alta
Vermeculita	2:1	100-120	600-800	Pequena	Baixa	Alta
Esmectita	2:1	80-120	600-800	Sim	Baixa	Ext. Alta
2:1 HE	2:1:1	20-40	70-150	Não	Elevada	Média
Caulinita	1:1	1-10	10-20	Não	Elevada	Baixa


IMPORTÂNCIA DE ÓXIDOS DE FERRO

Óxido metálico mais abundante no solo; Ocorrem dispersos no solo, concentrados em um horizonte ou em nódulos, ferricretes, mosqueados, plintita, petroplintita...

Papel importante na morfologia do solo:Cor; Estrutura; Feições como mosqueados, plintita, etc.

As unidades básicas são octaedros de Fe; Diferenças entre as espécies minerais são principalmente o arranjamento dos octaedros.

Óxido de Fe Goethita

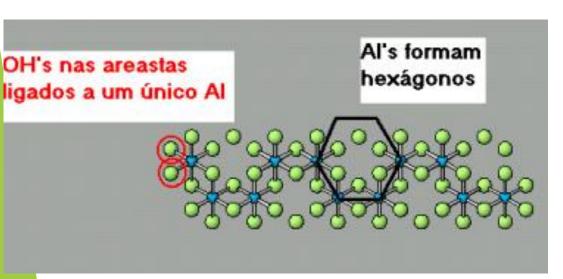
ÓXIDOS DE FERRO

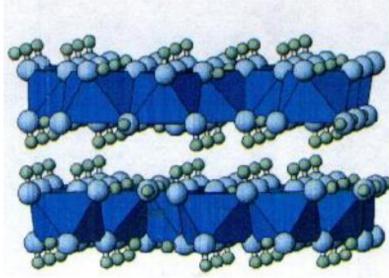
HEMATITA

- Ocorre em climas quentes e úmidos.
- Alto poder pigmentante.
- ▶ 1% já dá coloração vermelha ao solo.

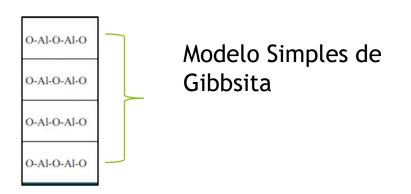
MAGNETITA

- É um mineral primário fração areia fina.
- Propriedades magnéticas, pode ser detectado com ímã.
- Coloração Preta


GOETHITA


- É a forma de Fe3+ mais estável.
- Ocorre em regiões mais frias e úmidas, com teores elevados de MO e pH ácido.
- Coloração Bruna a Amarelada

ÓXIDOS DE ALUMÍNIO


GIBSITA

- Ligação de lâminas octaedrais de Al.
- Ocorrência natural em solos muito intemperizados (ácidos), clima quente e úmido, alta precipitação e boa drenagem.
- Importante na formação da estrutura do solo.

ÓXIDOS DE ALUMÍNIO

Al é liberado dos minerais primários e se precipita como mineral secundário, principalmente silicatos de alumínio.

OBRIGADA!!

E-mail: iolanda.reis@ufopa.edu.br iolandareis@outlook.com