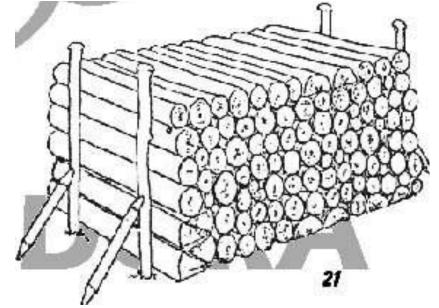


Universidade Federal do Oeste do Pará Instituto de Biodiversidade e Florestas Curso de Engenharia Florestal

Volumes de Madeira Empilhada, Laminada e Serrada



Renato Bezerra da Silva Ribeiro

É o volume de uma pilha de madeira roliça, em que, além do volume sólido de madeira, estão incluídos os espaços vazios, normais entre as toras/toretes. Esse volume é medido por uma unidade chamada **estéreo** ou **estére (st)**. $(1 \text{ st} \approx 0.7 \text{ m}^3 \text{ de madeira empilhada})$

Um estéreo consiste na quantidade de madeira contida em uma pilha de 1,0 m x 1,0 m x 1,0 m, cujas toras variam em área seccional, curvatura e forma, o que permite a existência de muitos espaços na pilha, não ocupados por madeira

É muito utilizado pelas empresas de celulose, carvão, padarias, olarias, cerâmicas.

- O volume de madeira empilhada, em estéreo (st), pode ser obtido genericamente pela seguinte expressão:

$$V = x$$
, y , z

V= volume da pilha, em st;

x= comprimento das toras, em m;

y= comprimento da pilha, em m; e

z= altura da pilha, em m.

 Quando as toras/toretes não possuem o mesmo comprimento, o volume em estéreo da pilha deve ser obtido pela expressão:

$$V = \overline{x}$$
. y. z

 \bar{x} = comprimento médio das toras/toretes, em m

 Quando houver variação da altura da pilha, esta deve ser medida em vários pontos, adotando-se, além do comprimento médio das toras/toretes, a altura média para determinação do volume em estéreo, conforme:

$$V = \overline{x}$$
. y. \overline{z}

 \bar{z} = altura média da pilha, em m.

Há dois fatores para expressar a conversão entre volume sólido e volume de madeira empilhada e vice-versa:

☐ **Fator de cubicação (Fc)** = Converte volume de madeira empilhada em volume sólido de madeira. Este fator é sempre menor do que 1.

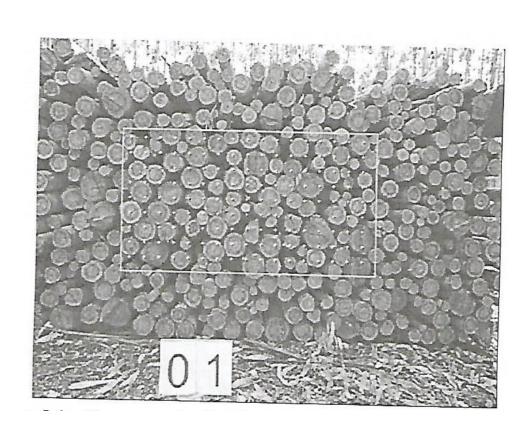
$$Fc = \frac{Volume\ S\'olido\ (m^3)}{Volume\ Empilhado\ (st)} < 1,0$$

☐ **Fator de empilhamento (Fe)** = Converte volume sólido de madeira em volume em metro estéreo (volume de madeira empilhada). Este fator é sempre maior ou igual a 1.

$$Fe = \frac{Volume\ Empilhado\ (st)}{Volume\ S\'olido\ (m^3)} \ge 1,0$$

Fatores que afetam o empilhamento de madeira

• Diâmetro e o comprimento da tora;


• Espessura da casca;

• A forma de empilhamento (manual ou mecanizado);

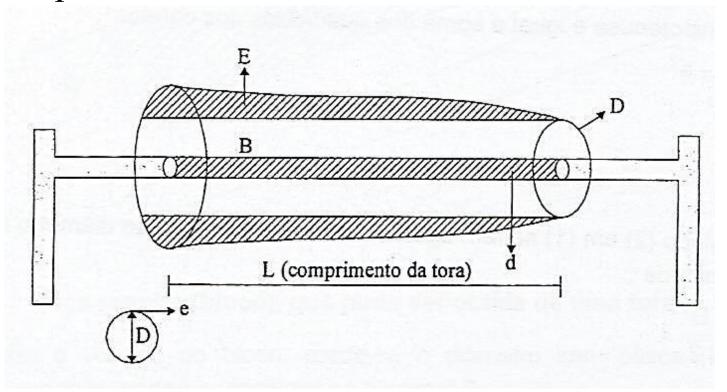
• Tempo de permanência no campo na forma de tora.

Método para determinação do volume de madeira empilhada, utilizando imagens e software (Digitora)

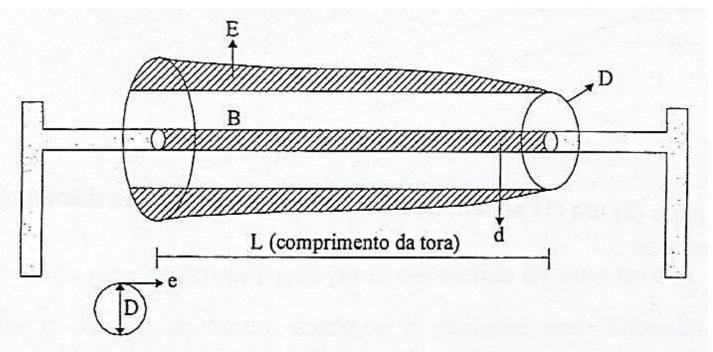
O software utiliza uma rede de pontos equidistantes distribuídos sobre uma fotografia digital

Exemplo 1

Em uma pilha de toras cujo volume foi calculado pelo método de Smalian, foram tomadas as seguintes medidas das mesmas: 1,40 m x 1,10 m x 0,80 m, sendo que o volume real das toras foi de 0,68 m³. Quais os fatores de cubicação e empilhamento?


Exemplo 2

Em uma pilha de madeira de dimensões de 2,0 m x 3,0 m x 1,5 m, utilizou-se um fator de cubicação igual a 0,60 para obter o volume sólido de madeira (m³). Assim, pergunta-se:


- a) Qual o volume sólido de madeira da pilha?
- b) Considerando que a pilha de madeira continha ¼ de espaços vazios, qual seria o volume sólido de madeira?

VOLUME DE MADEIRA LAMINADA

É importante para poder saber quantos compensados podem ser construídos a partir de uma árvore ou de um grupo de árvores. A tora é laminada até que se torne um cilindro perfeito.

VOLUME DE MADEIRA LAMINADA

D= diâmetro sem casca da menor extremidade

d= miolo não aproveitado para laminação, normalmente não excede a 5 cm

E= parte da árvore não aproveitável para a laminação

VOLUME DE MADEIRA DESENROLADA

Desejando-se o volume de madeira a ser desenrolada (V_L), basta subtrair o volume do cilindro definido por (D), daquele definido por (d).

$$V_L = \left(\frac{D^2 \cdot \pi}{4 \ ou \ 40000} - \frac{d^2 \cdot \pi}{4 \ ou \ 40000}\right) \cdot L$$

QUANTIDADE DE MADEIRA LAMINADA

Desejando-se a quantidade (Q) em metros, da lâmina obtida, basta utilizar a expressão:

$$Q = \frac{\frac{D^2 \cdot \pi}{4 \ ou \ 40000} - \frac{d^2 \cdot \pi}{4 \ ou \ 40000}}{e}$$

SUPERFÍCIE DE MADEIRA LAMINADA

Desejando-se a superfície de madeira laminada (S), em m² tem-se:

$$S = Q.L$$

Aplicação

Deseja-se saber, de um tronco com 2 metros de comprimento, diâmetro sem casca na menor extremidade igual a 40 cm, quantos compensados de (2 m x 2 m) podem ser obtidos, se cada lâmina tem 2 mm de espessura, e cada compensado é formado pela colagem de 4 destas lâminas. O miolo não laminado será de 4 cm.

- a) Volume de madeira laminada (V_L)
- b) Quantidade de madeira laminada (Q)
- c) Superfície de madeira laminada (S)
- d) Número de compensados.

É contabilizada de duas maneiras: por agrupamento de peças individuais de tamanhos iguais, que podem ou não estar agrupados em fardos, ou por agrupamento de peças de tamanhos variados (fardos ou pacotes).

Madeira de tamanho uniforme

Para a determinação do volume dos fardos, é necessário conhecer o volume e o número de peças, conforme fórmula:

$$VP = E \times L \times C$$

$$VF = VP \times N$$

VP =Volume da peça em m³ VF =Volume do fardo em m³

L = Largura, em metro

E = Espessura, em metro

N = Número de peças

C =Comprimento, em metro

Madeira de tamanhos variados

O cálculo do volume dos fardos (pacotes) de tamanho variado poderá ser feito das seguintes formas:

Quando as peças forem medidas individualmente:

$$VP = E \times L \times C$$

$$VF = \sum VP$$

Madeira de tamanhos variados

Quando as peças não forem medidas individualmente:

$$VF = l \, x \lg x \, \left(h - \sum e \right)$$

l = comprimento da pilha onde ocorre o maior adensamento de madeira

lg = largura de pilha

h =altura da pilha

e = altura do sarrafo (madeira serrada de pequena dimensão colocada nos espaços entre as madeira)

Aplicação

Considerando uma tábua de madeira com dimensões de 2 cm de espessura, 30 cm de largura e 4 m de comprimento, calcule:

- a) Volume em m³ de duas dúzias e meia de tábuas. (4 casas decimais)
- b) Número de tábuas necessário para fazer um piso de madeira de 6 m x 8 m. (1 casa decimal)